La regeneración celular en las plantas
PDF

Palabras clave

Estrés
daño
regeneración de tejidos

Resumen

Las plantas, como organismos sésiles, están expuestas a diferentes tipos de estrés biótico y abiótico que dañan sus tejidos. El ataque de microorganismos causantes de enfermedades como hongos y bacterias, así como la depredación por insectos y/o herbívoros, induce daño mecánico al follaje o la raíz y comprometen la sobrevivencia. Por otra parte, la exposición a concentraciones altas de metales, la sequía y la salinidad causan la pérdida de tejidos que son esenciales para el funcionamiento integral del organismo. La regeneración es un proceso de restauración que ocurre de manera permanente, ya que continuamente se reparan una gran cantidad de células, tejidos y órganos que se deterioran por el funcionamiento normal y que adquiere enorme importancia en las situaciones de agobio mencionadas, en que las células mitóticamente competentes reciben señales para recuperar los tejidos afectados o formar nuevos órganos, permitiendo a la planta continuar con las transiciones del desarrollo y ciclo de vida.

PDF

Citas

Ashida H., Mimuro H., Ogawa M., Kobayashi T., Sanada T., Kim M., Sasakawa C. 2011 Cell death and infection: A double-edged sword for host and pathogen survival. J. Cell Biol. 195: 931-942

Atta R., Laurens L., Boucheron-Dubuisson E., Guivarc'h A., Carnero E., Giraudat-Pautot V., Rech P., Chriqui D. 2009. Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. Plant J. 57: 626-644

Azpeitia E., Weinstein N., Benítez M., Mendoza L., Alvarez-Buylla E. 2013. Finding missing interactions of the Arabidopsis thaliana root stem cell niche gene regulatory network. Front. Plant Sci. 4:110

Bailey-Serres J., Mittler R. 2006. The roles of reactive oxygen species in plant cells. Plant Physiol. 141: 311-311

Bartels D., Sunkar R. 2005. Drought and salt tolerance in plants. Crit. Rev. Plant Sci. 24: 23-58

Bhat B.S., Shanaz E. 2014. Effectors-role in host-pathogen interaction. J. Agr. Env. Sci. 3: 265-285

Bhojwani S.S., Razdan M.K. 1996. Plant Tissue Culture: Theory and Practice. Vol 5. 1st Ed. Elsevier Science

Bruehl G.W. 1987. Soilborne plant pathogens. Macmillan Pub. Co

Culligan K.M., Robertson C.E., Foreman J., Doerner P., Britt A. B. 2006. ATR and ATM play both distinct and additive roles in response to ionizing radiation. Plant J. 48: 947-961

Che P., Lall S., Howell S.H. 2007. Developmental steps in acquiring competence for shoot development in Arabidopsis tissue culture. Planta 226: 1183-1194

Dangl J.L., Jones J.D.G. 2001. Plant pathogens and integrated defence responses to infection. Nature 411: 826-833

Dickman M.B., de Figueiredo P. 2013. Death be not proud—Cell death control in plant fungal interactions. PLOS Pathogens 9:e1003542

Eekhout T., Larsen P., de Veylder L. 2017. Modification of DNA checkpoints to confer aluminum tolerance. Trends Plant Sci. 22: 102-105

Freeman B.C. y Beattie G.A. 2008. An overview of plant defenses against pathogens and herbivores. Plant Pathology and Microbiology Publications.

Gichner T., Patková Z., Száková J., Demnerová K. 2006. Toxicity and DNA damage in tobacco and potato plants growing on soil polluted with heavy metals. Ecotoxicol. Environ. Safety 65: 420-426

Hammond-Kosack K.E., Jones J.D. 1996. Resistance gene-dependent plant defense responses. Plant Cell 8: 1773-1791

Henry E., Yadeta K.A., Coaker G. 2013. Recognition of bacterial plant pathogens: local, systemic and transgenerational immunity. New Phytol. 199: 908-915

Heyman J., Cools T., Canher B., Shavialenka S., Traas J., Vercauteren I., Van den Daele H., Persiau G., De Jaeger G., Sugimoto K. 2016. The heterodimeric transcription factor complex ERF115-PAT1 grants regeneration competence. Nat. Plants 2: 16165

Heyman J., Cools T., Vandenbussche F., Heyndrickx K.S., Van Leene J., Vercauteren I., Vanderauwera S., Vandepoele K., De Jaeger G., Van Der Straeten D., de Veylder L. 2013. ERF115 controls root quiescent center cell division and stem cell replenishment. Science 342: 860-863

Hu J., Zhang Y., Wang J., Zhou Y. 2014. Glycerol affects root development through regulation of multiple pathways in Arabidopsis. PLoS ONE 9: e86269

Hudik E., Yoshioka Y., Domenichini S., Bourge M., Soubigout-Taconnat L., Mazubert C., Yi D., Bujaldon S., Hayashi H., De Veylder L., Bergounioux C., Benhamed M., Raynaud C. 2014. Chloroplast dysfunction causes multiple defects in cell cycle progression in the Arabidopsis crumpled leaf mutant. Plant Physiol. 166: 152-167

Ikeuchi M., Sugimoto K., Iwase A. 2013. Plant callus: mechanisms of induction and repression. Plant Cell 25: 3159-3173

Jones J.D., Dangl J.L. 2006. The plant immune system. Nature 444: 323-329

Kidner C., Sundaresan V., Roberts K., Dolan L. 2000. Clonal analysis of the Arabidopsis root confirms that position, not lineage, determines cell fate. Planta 211: 191-199

Martin F.M., Uroz S., Barker D.G. 2017. Ancestral alliances: Plant mutualistic symbioses with fungi and bacteria. Science 356: 6340-6344

Melotto M., Underwood W., Koczan J., Nomura K., He S.Y. 2006. Plant stomata function in innate immunity against bacterial invasion. Cell 126: 969-980

Mittler R. 2006. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11: 15-19

Mittler R., Simon L., Lam E. 1997. Pathogen-induced programmed cell death in tobacco. J. Cell Sci. 110: 1333-1344

Pentzold S., Zagrobelny M., Roelsgaard P.S., Møller B.L., Bak S. 2014. The multiple strategies of an insect herbivore to overcome plant cyanogenic glucoside defence. PLOS ONE 9: e91337

Perianez-Rodriguez J., Manzano C., Moreno-Risueno M.A. 2014. Post-embryonic organogenesis and plant regeneration from tissues: two sides of the same coin? Front. Plant Sci. 5: 219

Perry R.N., Moens M. 2006. Plant nematology. CABI Book

Polyn S., Willems A., De Veylder L. 2015. Cell cycle entry, maintenance, and exit during plant development. Curr. Opin. Plant Biol. 23: 1-7

Raaijmakers J.M., Paulitz T.C., Steinberg C., Alabouvette C., Moënne-Loccoz Y. 2009. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321: 341-361

Reape T.J., McCabe P.F. 2008. Apoptotic-like programmed cell death in plants. New Phytol. 180: 13-26

Rosspopoff O., Chelysheva L., Saffar J., Lecorgne L., Gey D., Caillieux E., Colot V., Roudier F., Hilson P., Berthomé R., Da Costa M., Rech P. 2017. Direct conversion of root primordium into shoot meristem relies on timing of stem cell niche development. Development 44:1187-1200

Sharma P., Jha A.B., Dubey R.S, Pessarakli M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012: 1-26

Sugimoto K., Gordon S.P., Meyerowitz E.M. 2011. Regeneration in plants and animals: dedifferentiation, transdifferentiation, or just differentiation? Trends Cell Biol. 21: 212-218

Sugimoto K., Jiao Y., Meyerowitz E.M. 2010. Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Dev. Cell. 18: 463-471

van den Berg C., Willemsen V., Hendriks G., Weisbeek P y Scheres B. 1997. Short-range control of cell differentiation in the Arabidopsis root meristem. Nature 390: 287-289

War A.R., Paulraj M.G., Ahmad T., Buhroo A. A., Hussain B., Ignacimuthu S., Sharma H. C. 2012. Mechanisms of plant defense against insect herbivores. Plant Signal. Behav. 7: 1306-1320

Waterworth W.M., Footitt S., Bray C. M., Finch-Savage W.E., West C.E. 2016. DNA damage checkpoint kinase ATM regulates germination and maintains genome stability in seeds. Proc. Natl. Acad. Sci. U S A. 113: 9647-9652

Xu J., Hofhuis H., Heidstra R., Sauer M., Friml J., Scheres B. 2006. A molecular framework for plant regeneration. Science 311: 385-388

Yi D., Alvim Kamei C.L., Cools T., Vanderauwera S., Takahashi N., Okushima Y., Eekhout T., Yoshiyama K.O., Larkin J., Van den Daele H., Conklin P., Britt A., Umeda M., De Veylder L. 2014. The Arabidopsis SIAMESE-RELATED cyclin-dependent kinase inhibitors SMR5 and SMR7 regulate the DNA damage checkpoint in response to reactive oxygen species. Plant Cell 26: 296-309