Azospirillum una rizobacteria con uso potencial en la agricultura.
PDF

Palabras clave

Azospirillum
rizobacterias
fitohormonas
estrés
biofertilizante.

Resumen

El género Azospirillum pertenece al grupo de rizobacterias promotoras del crecimiento vegetal. Esta capacidad ha sido atribuida principalmente a la fijación del nitrógeno y producción de fitohormonas. Estas bacterias producen ácido indol-3-acético (AIA), un tipo de auxinas que inducen cambios morfológicos en el sistema radical de las plantas, y además pueden actuar como moléculas de señalización en la interacción planta-bacteria. Sus efectos sobre el crecimiento vegetal han permitido que se utilicen en la formulación de biofertilizantes como una alternativa en la agricultura. Sin embargo, muchos aspectos bioquímicos sobre la interacción de esta bacteria con las plantas son aún desconocidos. Aquí se resumen algunas vías por el cual esta bacteria promueve el crecimiento vegetal así como su importancia en la agricultura.

PDF

Citas

Bacilio M, Rodriguez H, Moreno M, Hernandez JP, Bashan Y. 2004. Mitigation of salt stress in wheat seedlings by a gfp-tagged Azospirillum lipoferum. Biol. Fertil Soils. 40:188-193.

Bashan Y, Holguin G, de-Bashan LE. 2004. Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997– 2003). Can. J. Microbiol. 50:521-77.

Bashan Y. de-Bashan LE. 2002. Protection of tomato seedlings against infection by Pseudomonas syringae pv. tomato by using the plant growth-promoting bacterium Azospir¬illum brasilense. Appl. Environ. Microbiol. 68: 2637-43.

Bashan Y. Bashan LE. 2010. How the Plant Growth-Promoting Bacterium Azospirillum Promotes Plant Growth—A Critical Assessment. In: Advances in Agronomy, ed. DL Sparks, pp. 78-122, Volume 108. Elsevier Inc.

Ben Dekhil S, Cahill M, Stackebrandt E, Sly LI. 1997.Transfer of Conglomeromonas largomobilis subsp. largomobilis to the genusAzospirillum as Azospirillum largimobile comb. nov., and elevation of Conglomeromonas largomobilis subsp. parooensis to the new type species of Conglomeromonas, Conglomeromonas parooensis sp. nov. Syst. Appl. Microbiol . 20:72-77.

Bottini R, Cassán F, Piccoli P. 2004. Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl. Microbiol. Biotechnol. 65:497-503.

Burdman S, Volpin H, Kigel J, Kapulnik Y, Okon Y. 1996. Promotion of nod gene inducers and nodulation in common bean (Phaseolus vulgaris) roots inoculated with Azospirillum brasilense Cd. Appl. Environ. Microbiol. 62:3030-33.

Cangahuala-Inocente GC, do Amaral FP, Faleiro AC, Huergo LF, Arisi ACM. 2013. Identification of six differentially accumulated proteins of Zea mays seedlings (DKB240 variety) inoculated with Azospirillum brasilense strain FP2. Eur. J. Soil Biol. 58:45-50.

Canto MJC, Medina PS, Morales AD. 2004. Efecto de la inoculación con Azospirillum sp. en plantas de chile habanero (Capsicum chinense Jacquin). Trop. Subtrop Agroecosys. 4:21-27.

Cardon ZG, Whitbeck JL. 2007. The Rhizosphere - An Ecological Perspective, pp. 31-56. Academic Press, San Diego, CA.

Cassan F, Maiale S, Masciarelli O, Vidal A, Luna V, Ruiz O. 2009. Cadaverine production by Azospirillum brasilense and its possible role in plant growth promotion and osmotic stress mitigation. Eur. J. Soil Biol. 45:12-19.

Chamam A, Sanguin H, Bellvert F, Meiffren G, Comte G, Wisniewski-Dyé Fl, Bertrand C, Prigent-Combaret C. 2013. Plant secondary metabolite profiling evidences strain-dependent effect in the Azospirillum–Oryza sativa association. Phytochemistry. 87:65-77.

Cohen A, Bottini CR, Piccoli PN. 2007. Azospirillum brasilense Sp245 produces ABA in chemically-defined culture medium and increase ABA content in Arabidopsis plants. Int. J. Plant Growth Regul. 12:52-60.

Cohen A, Travaglia C, Reinoso H, Piccoli P, Bottini R. 2001. Azospirillum inoculation and inhibition of gibberellins and ABA synthesis in maize seedlings under drought. Proc. Plant Growth Regul. Soc. Am. 28:88-93.

Creus CM, Graziano M, Casanovas EM, Pereyra MA, Simontacchi M, Puntarulo S, Barassi CA, Lamattina L. 2005. Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato. Planta. 221:297-303.

Creus CM, Sueldo RJ, Barassi CA. 2004. Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Can. J. Bot. 82:273-281.

de Zelicourt A, Al-Yousif M, Hirt H. 2013. Rhizosphere Microbes as Essential Partners for Plant Stress Tolerance. Mol. Plant 6:242-45.

Dobbelaere S, Croonenborghs A, Thys A, van de Broek A, Vanderleyden J.1999. Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil. 212:155-164.

Eckert B, Weber OB, Kirchhof G, Halbritter A, Stoffels M, Hartmann, A. 2001. Azospirillum doebereinerae sp. nov., a nitrogen fixing bacterium associated with the C4-grass Miscanthus. Int. J. Syst. Evol. Microbio.l 51:17-26.

El-Komy HM, Hamdia MA, El-Baki GKA. 2003. Nitrate reductase in wheat plants grown under water stress and inoculated with Azospirillum spp. Biol. Plantarum. 46:281–87.

Gunarto I, Adachi K, Senboku T. 1999. Isolation and selection of indigenous Azospirillum spp. from a subtropical island and effect of inoculation on growth of lowland rice under several levels of N application. Biol. Fertil. Soils 28:129-135.

Hadas R, Okon Y. 1987. Effect of Azospirillum brasilense inoculation on root morphology and respiration in tomato seedlings. Biol. Fertil. Soils. 5:241-247.

Hartmann A, Baldani JI. 2006. The Genus Azospirillum. In: The Prokaryotes A Handbook on the Biology of Bacteria, ed. M Dworkin, pp. 115–140. Springer Science Business Media, LLC. New York, USA.

Helman Y, Burdman S, Okon Y. 2011. Plant growth promotion by rhizosphere bacteria through direct effects. In Beneficial Microorganisms in Multicellular Life Form, eds Rosenberg E., Gophna U, pp. 89-103. Heidelberg: Springer.

Holguin G, Bashan Y. 1996. Nitrogen-fixation by Azospirillum brasilense Cd is promoted when co-cultured with a mangrove rhizosphere bacterium (Staphylococcus sp.). Soil Biol. Biochem. 28:1651-60.

Jain DK, Patriquin DG. 1984. Root hair deformation, bacterial attachment, and plant growth in wheat-Azospirillum associations. Appl. Environ. Microbiol. 48:1208-13.

Kapulnik Y, Okon Y, Henis Y. 1985. Changes in root morphology of wheat caused by Azospirillum inoculation. Can. J. Microbiol. 31:881-887.

Khammas KM, Ageron E, Grimont PAD, Kaiser, P. 1989. Azospirillum irakense sp. nov., a nitrogen fixing bacterium associated with rice roots and rhizosphere soil. Res. Microbiol. 140:679–693.

Magalhães FM, Baldani JI, Souto M, Kuykendall JR, Dobereiner J. 1983. A new acid tolerant Azospirillum species. Ann. Acad. Bras. Cienc. 55:417–430.

Manoharachary C, Mukerji KG. 2006. Rhizosphere Biology–an Overview. In: Microbial Activity in the Rhizosphere, ed KG Mukerji, C Manoharachary, J Singh, pp. Springer, German.

Mehnaz S, Weselowski B, Lazarovits G. 2007. Azospirillum zeae sp. nov., a diazotrophic bacterium isolated from rhizosphere soil of Zea mays. Int. J. Syst. Evol. Microbiol. 57:2805-2809.

Molina-Favero C, Creus CM, Lanteri ML, Correa-Aragunde N, Lombardo MC, Barassi CA, Lamattina L. 2007. Nitric oxide and plant growth promoting rhizobacteria: Common features influencing root growth and development. Adv. Bot. Res. 46:1-33.

Molina-Favero C, Creus CM, Simontacchi M, Puntarulo S, Lamattina L. 2008. Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato. Mol. Plant-Microbe Interact. 21:1001-9.

Overvoorde P, Fukaki H, Beeckman T. 2010. Auxin Control of Root Development. Cold Spring Harb. Perspect. Biol. 2:a001537

Patriquin DG, Döbereiner J, Jain DK. 1983. Sites and processes of association between diazotrophs and grasses. Can. J. Microbiol. 29:900-15.

Peng G, Wang H, Zhang G, Hou W, Liu Y, Wang, ET, Tan Z. 2006. Azospirillum melinis sp. nov., a group of diazotrophs isolated from tropical molasses grass. Int. J. Syst. Evol. Microbiol. 56:1263-1271.

Pereyra MA, Zalazar CA, Barassi C. A. 2006. Root phospholipids in Azospirillum inoculated wheat seedlings exposed to water stress. Plant Physiol. Biochem. 44:873-9.

Piccoli P, Lucangeli C, Schneider G, Bottini R. 1997. Hydrolisis of 17,17-[2H2]-gibberellin A20-glucoside and 17,17-[2H2]-gibberellin A20-glucosyl esther by Azospirillum lipoferum cultured in nitrogen-free biotin-based chemically defined medium. Plant Growth Regul. 23:179–182.

Piccoli P, Bottini R. 1996. Light enhancement of gibberellin production by Azospirillum lipoferum cultures. Biocell. 20:200-207.

Pothier JF, Wisniewski-Dyé F, Weiss-Gayet M, Moënne-Loccoz Y, Prigent-Combaret C. 2007. Promoter-trap identification of wheat seed extract-induced genes in the plant-growth-promoting rhizobacterium Azospirillum brasilense Sp245. Microbiology. 153:3608-22.

Prinsen E, Costacurta A, Michiels K, Vanderleyden J, Van Onckelen H. 1993. Azospirillum brasilense indole-3-acetic acid biosynthesis: evidence for a non-tryptophan dependent pathway. Mol. Plant–Microbe Interact. 6:609–15.

Reinhold B, Hurek T, Fendrik I, Pot B, Gillis M, Kersters K, Thielemans S, De Ley J. 1987. Azospirillum halopraeferens sp. nov., a nitrogen-fixing organism associated with roots of Kallar grass (Leptochloa fusca (L.) Kunth). Int. J. Syst. Bacteriol. 37:43-51.

Ribaudo CM, Krumpholz EM, Cassan FD, Bottini R, Cantore ML, Cura JA. 2006. Azospirillum sp. promotes root hair development in tomato plants through a mechanism that involves ethylene. J. Plant Growth Regul. 25: 175-85.

Saubidet MI, Fatta N, Barneix AJ. 2002. The effect of inoculation with Azospirillum brasilense on growth and nitrogen utilization by wheat plants. Plant Soil. 245:215–22.

Shah S, Karkhanis V, Desai A. 1992. Isolation and characterization of siderophore with antimicrobial activity from Azospirillum lipoferum. M. Curr. Microbiol. 25:34–35.

Somers E, Ptacek D, Gysegom P, Srinivasan M, y Vanderleyden J. 2005. Azospirillum brasilense produces the auxin-like phenylacetic acid by using the key enzyme for indole-3-acetic acid biosynthesis. Appl. Environ. Microbiol. 71:1803-10.

Spaepen S, Van Derleyden J, Okon Y. 2009. Plant growth-promoting actions of rhizobacteria. Adv. Bot. Res. 51:283–320.

Spaepen S, Van derleyden J, Remans R. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 31:425–48.

Spaepen S, Dobbelaere S, Croonenborghs A, Vanderleyden J. 2008. Effects of Azospirillum brasilense indole-3-acetic acid production on inoculated wheat plants. Plant Soil. 312:15-23.

Steenhoudt O, Keijers V, Okon Y, Vanderleyden J. 2001. Identification and characterization of a periplasmic nitrate reductase in Azospirillum brasilense Sp245. Arch. Microbiol. 175:344-52.

Strzelczyk E, Kamper M, Li C. 1994. Cytocinin-like-substances and ethylene production by Azospirillum in media with different carbon sources. Microbiol. Res. 149:55-60.

Taiz L, Zeiger E, 2002. Auxin: the growth hormone. In Plant Physiology, pp. 423–460, Sinauer Associates, Sunderland, Mass, USA.

Tapia-Hernández A, Mascarua-Esparza MA, Caballero-Mellado J. 1990. Production of bacteriocins and siderophore-like activity in Azospirillum brasilense. Microbios. 64:73–83.

Tarrand JJ, Krieg NR, Döbereiner J. 1978. A taxonomic study of the Spirillum lipoferum group with descriptions of a new genus Azospirillum gen. nov. and two species Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can. J.Microbiol. 24:967-80.

Tien TM, Gaskins MH, Hubbell DH. 1979. Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl. Environ. Microbiol. 37:1016-24.

Tortora ML, Diaz-Ricci JC. Pedraza RO. 2011. Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum. Arch. Microbiol. 193:275-86.

Umali-Garcia M, Hubbel DH, Gaskins H, Dazzo FB. 1980. Association of Azospirillum with grass roots. Appl. Environ. Microbiol. 39:219–26.

Van de Broek A, Michiels J, Van Gool A, Vanderleyden J. 1993. Spatial-temporal colonization patterns of Azospirillum brasilense on the wheat root surface and expression of the bacterial nifH-gene during association. Mol. Plant-Microbe Interact. 6:592-600.

Van de Broek A, Lambrecht M, Eggermont K, Vanderleyden J. 1999. Auxins upregulate expression of the indole-3-pyruvate decarboxylase gene in Azospirillum brasilense. J. Bacteriol. 181:1338-1342.

Van Loon L.C. 2007. Plant responses to plant growth-promoting rhizobacteria. Eur. J. Plant Pathol. 119:243-54.

Veresoglou SD, Menexes G. 2010. Impact of inoculation with Azospirillum spp. on growth properties and seed yield of wheat: a meta-analysis of studies in the ISI Web of Science from 1981 to 2008. Plant Soil. 337: 469-80.

Weller DM. 2007. Pseudomonas bíocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology. 97: 250-56.

Wisniewski-Dyé F, Borziak K, Khalsa-Moyers G, Alexandre G, Sukharnikov LO, et al. 2011. Azospirillum Genomes Reveal Transition of Bacteria from Aquatic to Terrestrial Environments. PLoS Genet 7(12): e1002430.

Xie C-H, Yokota A. 2005. Azospirillum oryzae sp. nov., a nitrogen-fixing bacterium isolated from the roots of the rice plant Oryza sativa. Int. J. Syst. Evol. Microbiol . 55:1435-1438.

Yashuda M, Isawa T, Shinozaki S, Minamisawa K, Nakashita H. 2009. Effects of colonization of a bacterial endophyte Azospirillum sp. B510 on disease resistance in rice. Biosci. Biotechnol. Biochem. 73:2595-99.

Young CC, Hupfer H, Siering C, Ho M-J, Arun AB, Lai W-A, Rekha PD, Shen F-T, Hung M-H, Chen W-M, Yassin AF. 2008. Azospirillum rugosum sp. nov., isolated from oil-contaminated soil. Int. J. Syst. Evol. Microbiol. 58:959-963.