Efecto del Cromo en el crecimiento in vitro de dos variedades híbridas de maíz (<I>Zea mays</I>)
PDF

Palabras clave

cromo
maíz
crecimiento
chromium
maize
growth

Resumen

El Cromo (Cr) es el séptimo metal más abundante en la corteza terrestre, varía entre los 100 y los 300 μg/g. Sin embargo, la inadecuada disposición de desechos provenientes de procesos industriales lo han convertido en un importante contaminante ambiental. Los componentes del cromo son perjudiciales para las plantas afectando su crecimiento y desarrollo, por lo que es necesario establecer estrategias para remover el metal de los suelos contaminados y a la vez proteger a las plantas para evitar la disminución de su productividad. En este trabajo, se utilizaron plantas de maíz de dos variedades híbridas, Puma PT3 Poncho y Albatros, para evaluar su tolerancia al Cromo en condiciones de crecimiento in vitro, resultando más tolerante en el follaje la variedad Puma, que aunque redujo su crecimiento en concentraciones de 100 a 1000 μM del metal, continuó con su crecimiento.

PDF

Citas

Cervantes C, Garcia JC, Devars S, Corona FG, Tavera HL, Torres-Guzman JC, Sanchez RM (2001) Interactions of chromium with microorganisms and plants. FEMS. Microbiological Review 25: 335-347.

Cervantes C, Campos-García J (2007) Reduction and efflux of chromate in bacteria. In DH Nies, S Silver (eds.), Molecular Microbiology of Heavy Metals. Springer-Verlag, Berlin.

Delgadillo-López AE, González-Ramirez CA, Prieto-García F, Villagómez-Ibarra JR, Acevedo-Sandoval O (2011) Fitorremediación: una alternative para eliminar la contaminación. Tropical and subtropical Agroecosystems 14: 597-612.

Demostrables J, Scanlon MJ (2009) Maize (Zea mays): A model organism for basic an applied research in plant bio logy. Cold Spring Harbor Protoc.10: doi: 10.1101/pdb.emo132.

Dubey S, Misra P, Dwivedi S, Chatterjee S, Bag SK, Mantri S, Asif MH, Rai A, Kumar S, Shri M, Tripathi P, Tripathi RD, Trivedi PK, Chakrabarty D, Tuli R (2010) Transcriptomic and metabolomic shifts in rice roots in response to Cr (VI) stress. BMC Genomics 11: 648-659.

Hayat S, Khalique G, Irfan M, Arif Shafi Wani, Tripathi BN, Ahmad A (2011) Physiological changes induced by chromium stress in plants: an overview. Springer-Verlag, 2-13.

Hochholdinger F, Katrin W, Sauer M, Dembonsk D (2004) Genetic dissection of root formation in maize (Zea mays) reveals root-type specific development programmes. Annals of Botany 93: 359-368.

Liedgens M, Soldati A, Stamp P, Richner W (2000) Root development of maize (Zea mays L.) as observed with minirhizotrons in lysimeters. Crop Science 40: 1665-1672.

López-Bucio J, Hernández-Madrigal F, Cervantes C, Ortiz-Castro R, Carreón-Abud Y, Martínez-Trujillo M (2014) Phosphate relieves chromium toxicity in Arabidopsis thaliana plants by interfering with chromate uptake. Biometals 27: 363-370.

Marchiol L, Fellet G, Perosa D, Zerbi G (2007) Removal of trace metals by Sorghum bicolor and Helianthus annuus in a site polluted by industrial wastes: a field experience. Plant Physiology and Biochemistry 45: 379-387.

Martínez-Trujillo M, Carreón-Abud Y (2015) Effect of mineral nutrients on the uptake of Cr (VI) by maize plants. New Biotechnology 32: 396-402.

Martínez-Trujillo M, Méndez-Bravo A, Ortiz-Castro R, Hernández-Madrigal F, Ibarra-Laclette E, Ruiz-Herrera LF, Long TA, Cervantes C, Herrera-Estrella L, López-Bucio J (2014) Chromate alters root system architecture and activates expression of genes involved in iron homeostasis and signaling in Arabidopsis thaliana. Plant Molecular Biology 86: 35-50.

Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal contaminated soils and groundwater: an evaluation. Engineering Geology 60: 193-207.

Murashige T, Skoog FA (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15: 473-497.

Ortiz-Castro R, Martínez-Trujillo M, López-Bucio J, Cervantes C, Dubrovsky J (2007) Effects of dichromate on growth and root system architecture of Arabidopsis thaliana seedlings. Plant Science 172: 684-691.

Perales HR, Benz BF, Brush SB (2005) Maize diversity and ethnolinguistic diversity in Chiapas, Mexico. Proceedings of the National Academy of Sciences USA 102: 949-954.

Pilon-Smits E (2005) Phytoremediation. Annual Review of Plant Biology 56: 15-39.

Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environment International Journal 31: 739-753.

Shupack SI (1991) The chemistry of chromium and some resulting analytical problems. Environmental Health Perspectives 92: 7-11.

Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. A review. Environmental Chemical Letters 8: 1-17.

Zayed AM, Lytle CM, Qian JH, Terry N (1998) Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta 206: 293-299.